
OCR Further Pure 2 Module Revision Sheet

The FP2 exam is 1 hour 30 minutes long. You are allowed a graphics calculator.

Before you go into the exam make sure you are fully aware of the contents of the formula booklet
you receive. Also be sure not to panic; it is not uncommon to get stuck on a question (I’ve
been there!). Just continue with what you can do and return at the end to the question(s)
you have found hard. If you have time check all your work, especially the first question you
attempted. . . always an area prone to error.

J .M .S .

Rational Functions

• Review all partial fractions and polynomial division work from C4 before starting this
section.

• A nice ‘trick’ that can be used from time-to-time is to make the top line of an algebraic
fraction look like a multiple of the bottom. Then you can split it up. For example

x− 1

x+ 3
=

x+ 3− 4

x+ 3
= 1− 4

x+ 3
,

2x2 − 1

x− 2
=

2x2 − 4x+ 4x− 1

x− 2
=

2x(x− 2) + 4x− 1

x− 2
= 2x+

4x− 8 + 7

x− 2
= 2x+ 4 +

7

x− 2
.

Some students like this & others don’t; it’s up to you if you use it. You could just use
polynomial division.

• For some reason best known to the examiners at OCR, C4 only contains two of the three

partial fraction types1. In C4 you dealt with
ax+ b

(cx+ d)(ex + f)
and

ax2 + bx+ c

(dx+ e)(fx+ g)2
. In

FP2 you also need to know how do deal with
ax2 + bx+ c

(dx+ e)(fx2 + g)
. The general technique is

ax2 + bx+ c

(dx+ e)(fx2 + g)
≡ A

dx+ e
+

Bx+ C

fx2 + g
.

Remember that to use ‘pure’ partial fractions the numerator has to have order less than
the denominator.

• For example to express
5x2 − 7x+ 14

(x− 3)(2x2 + 1)
in partial fractions we start:

5x2 − 7x+ 14

(x− 3)(2x2 + 1)
≡ A

x− 3
+

Bx+ C

2x2 + 1
,

⇒ 5x2 − 7x+ 14 ≡ (2x2 + 1)A+ (x− 3)(Bx+ C).

Clearly a good x-value to use is x = 3, so

x = 3 ⇒ 45− 21 + 14 ≡ 19A ⇒ A = 2.

We’ve no more cunning values so just use x = 0 to find 14 = 2− 3C, which gives C = −4.

1Note that the wonderful MEI has all three in C4 which is much more coherent. . .
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Next use x = 1 to give 12 = 6 + (−2)(B − 4), which solves to B = 1. Therefore

5x2 − 7x+ 14

(x− 3)(2x2 + 1)
≡ 2

x− 3
+

x− 4

2x2 + 1
.

• You can always make the leap from polynomial division to partial fractions in one go if
you like. For example to divide

3x4 + 13x3 + 27x2 + 56x+ 59

x3 + 3x2 + 4x+ 12

we have ‘quarticcubic ’. We are therefore expecting ‘linear + quadratic
cubic ’. But, because the denom-

inator can be factorised to (x+ 3)(x2 + 4), we could split the ‘quadraticcubic ’ term into partial
fractions too. So

3x4 + 13x3 + 27x2 + 56x+ 59

(x+ 3)(x2 + 4)
≡ Ax+B +

C

x+ 3
+

Dx+ E

x2 + 4
,

3x4 + 13x3 + 27x2 + 56x+ 59 ≡ (Ax+B)(x+ 3)(x2 + 4) + C(x2 + 4) + (Dx+ E)(x+ 3),

Clearly A = 3 by considering the x4 coefficient. Running through the rest of the calcula-
tions in the usual way (you should do this yourself) we find

3x4 + 13x3 + 27x2 + 56x+ 59

(x+ 3)(x2 + 4)
≡ 3x+ 4 +

2

x+ 3
+

x+ 1

x2 + 4
.

Graphs

• To sketch a graph of y = f(x)
g(x) there are a series of steps to follow. If one step contradicts

another, chances are you’ve made a mistake. Firstly to find where a curve crosses the
x-axis, set y = 0 and solve. Similarly to find where a curve crosses the y-axis, set x = 0
and solve.

• To find stationary points just solve dy
dx = 0 as usual. To discover their nature you can use

the second derivative as normal; or the lo-tech approach. Review your C1 notes.

• To find the vertical asymptotes of the curve y = f(x)
g(x) you need to find where g(x) = 0. So

y = x+3
(2x−1)(x+2) will have vertical asymptotes x = −2 and x = 1

2 .

• To find a horizontal asymptotes of y = f(x)
g(x) you must look at the order of f(x) and the

order of g(x).

1. If “order of f(x)” < “order of g(x)” then, as x → ±∞, g(x) is much, much larger
than f(x), so y = 0 is the horizontal asymptote.

2. If “order of f(x)” = “order of g(x)” then, as x → ±∞, the dominant term of f(x)
and g(x) becomes the largest power of x. Therefore the horizontal asymptote becomes

the ratio of the coefficients of the largest power of x. For example y = 7x2+2x−1
5x2−x−2

has

y = 7
5 as its horizontal asymptote.

(Another, possibly better, way of thinking about this to divide the improper fraction
into quotient and remainder by polynomial division. Since the order of the numerator
is the same as the order of the denominator, then the quotient is a constant. This
constant is the value of the horizontal asymptote.)
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3. If “order of f(x)” > “order of g(x)” then there is no horizontal asymptote because
as x → ±∞, f(x) is much, much larger than g(x), so y is unbounded, heading up to
+∞ or down to −∞ (just think about what happens when x gets really big).

• If the numerator has order one more than the denominator, there will exist an oblique

asymptote; a line of the form y = mx + c that the curve approaches when x → ±∞.
To find this line, you must carry out the polynomial division and find the quotient and
remainder. For example y = 3x2+4x+5

x+1 . We know y = 3x2+4x+5
x+1 = Ax + B + C

x+1 and,

carrying out the calculation (do it yourself!), we find y = 3x+ 1 + 4
x+1 . Therefore the oblique

asymptote is y = 3x+ 1 because the 4
x+1 → 0 as x → ±∞.

Similarly you should find (again, do it yourself!) y = −x3+x+2
x2+x+1 = −x+1+ x+1

x2+x+1 , so the oblique
asymptote is y = −x+ 1.

• You must be able to discover the range of y-values for which the curve exists, and, equiva-
lently, the values for which it does not. This can be done by finding the stationary points
on the curve and considering a sketch. However, there is quite a neat algebraic method.
For example: Find the values of y for which the curve

y =
x2 + x+ 1

x2 + 1

exists. Multiplying by the denominator we discover y(x2 + 1) = x2 + x+ 1. This can be
rearranged as a quadratic in x: (y − 1)x2 − x + (y − 1) = 0. For the curve to exist, we
need the quadratic to have at least one solution, so b2 − 4ac > 0. So

(−1)2 − 4(y − 1)(y − 1) > 0,

4y2 − 8y + 3 6 0,

(2y − 3)(2y − 1) 6 0.

This quadratic inequality solves to 1
2 6 y 6

3
2 . So the curve only exists between the

horizontal lines y = 1
2 and y = 3

2 .

• Given a graph of y = f(x), you must also be able to sketch the graph of y2 = f(x).
Most students (including myself) mentally re-cast the problem as drawing y = ±

√

f(x).
Things to look for include

1. Anything below the x-axis on the original graph (y) is negative and therefore cannot
be square rooted. Therefore these x-values represent a forbidden region where y2

doesn’t exist.

2. All y-values above the x-axis get square rooted. Then these new points also get
reflected in the x-axis. Any graph y2 = f(x), must have a line of symmetry in the
x-axis.

3. All positive y-values on the original graph get square rooted; therefore points on the
line y = 1 are invariant. If y > 1, then they get ‘pulled down’ towards the x-axis
(
√
100 = 10). If y < 1 then the points get pushed further away from the x-axis

(
√

1
4 = 1

2).

4. Vertical asymptotes on y remain vertical asymptotes on y2.

5. Horizontal asymptotes above the x-axis (y = k, say) become horizontal asymptotes
y = ±

√
k.

6. Any points where the original curve hits the x-axis are also invariant (
√
0 = 0). Also,

the gradient of any points where y hits the x-axis become vertical on the y2 graph.

7. Any stationary point above the x-axis on y ((2, 16), say) remain stationary points at
(2,±4), say.
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Polar Coordinates

• Polar coordinates are given as points with (r, θ) with the constraints r > 0 and (usually)
either 0 6 θ < 2π or −π < θ 6 π. The distance from the origin is r and θ is the
angle made with the initial line (i.e. the positive x-axis) measured anti-clockwise. The
angle constraints are used so that each point in space has a unique angle2. The ‘pole’ is
sometimes used to describe the origin of your xy-grid in the context of a polar graph.

• Circles are described by ‘r = constant’. Lines running out from the pole are described by
‘θ = constant’.

• Polar curves are a new way of describing curves by showing a relationship between r and
θ. They are usually given in the form r = f(θ).

• To sketch a polar curve r = f(θ) there are various tools to help you (in most cases
completely analogous to the tools have help you draw y = f(x)).

1. If in doubt, throw θ values into your r = f(θ) and work out r-values for given θ-values
and plot them.

2. If you are trying to draw r = f(θ), some students find it helpful to draw y = f(x) to
discover the general behavior of f .

3. Understand that solving dr
dθ = 0 gives you points where the curve is locally closest or

furthest from the pole. If d2r
dθ2

> 0 then it is a point closest to the pole. If d2r
dθ2

< 0
then it is a point furthest from the pole.

4. Solving r = 0 will give you the θ values (θ1, say) that represent where the curve
drops into the pole. Therefore the line θ = θ1 will represent a tangent to the curve.

5. Look for symmetries in your function. For example r = sin θ. We know the sine
wave has symmetry about π

2 ; i.e. sin(π − θ) ≡ sin θ. Therefore the line θ = π
2 must

represent a line of symmetry on the polar curve.

More generally if you can show that f(2α − θ) ≡ f(θ) then θ = α represents a line
of symmetry on the polar curve r = f(θ).

• To find areas on a polar graph we use the formula

Area =

∫ θ2

θ1

1
2r

2 dθ.

• To convert from cartesian form to polar form use the relationships

x2 + y2 = r2, x = r cos θ, y = r sin θ, tan θ = y
x .

These can be derived easily from the point (x, y) drawn with a right angled triangle to
the origin.

Hyperbolic Functions

• Know that the hyperbolic trigonometric functions3 are defined

coshx ≡ ex + e−x

2
, sinhx ≡ ex − e−x

2
, tanhx ≡ sinhx

coshx
=

ex − e−x

ex + e−x
.

2Otherwise (3, 0), (3, 2π), (3, 4π), . . . would all be the same point.
3Compare with normal trig functions cosx ≡

eix+e−ix

2
, sin x ≡

eix−e−ix

2i
, tan x ≡

sinx
cos x

.
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Similarly (as you would expect) we define

sechx ≡ 1

cosh x
, cosech x ≡ 1

sinhx
, coth x ≡ 1

tanhx
.

• Two important relationships that drop out instantly are

cosh x+ sinhx = ex and coshx− sinhx = e−x.

• You must know (or, better yet be able to work out from the definitions) the sketches for
all 6 hyperbolic curves. Also sinhx is ‘one-to-one’ so can be inverted without restricting
the domain. However, coshx is ‘many-to-one’ so a domain restriction is required (x > 0)
to invert it.

• Differentiating the above definitions we quickly find

d

dx
coshx = sinhx

d

dx
sinhx = coshx.

• We also find cosh2 x − sinh2 x = 1 and sinh 2x = 2 sinhx coshx. To derive results like
these, run back to the exponential definitions and work from one side to the other. For
example to prove the latter of the two results stated, start with 2 sinhx cosh x:

2 sinhx cosh x = 2

(

ex − e−x

2

)(

ex + e−x

2

)

=
(ex − e−x)(ex + e−x)

2

=
e2x + 1− 1− e−2x

2
= sinh 2x.

• You need to know the logarithmic forms4 for the inverse hyperbolic functions:

sinh−1 x = ln
(

x+
√

x2 + 1
)

for all x,

cosh−1 x = ln
(

x+
√

x2 − 1
)

for x > 1,

tanh−1 x = 1
2 ln

(

1 + x

1− x

)

for − 1 < x < 1.

• For example: Solve 24 cosh x+ 16 sinhx = 21. Re-write the sinhx and cosh x in terms of
ex and then solve the resulting ‘quadratic in disguise’.

12(ex + e−x) + 8(ex − e−x) = 21,

20ex − 21 + 4e−x = 0,

20(ex)2 − 21(ex) + 4 = 0,

(5ex − 4)(4ex − 1) = 0.

This then solves to x = ln 4
5 or x = ln 1

4 .

• A particularly useful identity which helps in some tougher problems is (x−
√
x2 − 1)(x+√

x2 − 1) ≡ 1. So

1

x−
√
x2 − 1

≡ x+
√

x2 − 1 and
1

x+
√
x2 − 1

≡ x−
√

x2 − 1.

4Derived by considering y = sinh−1 x, ⇒ sinh y = x, ⇒ ey −
1
ey

= 2x, ⇒ (ey)2 − 2x(ey)− 1 = 0.
Then solve the resulting ‘quadratic in disguise’ for ey .
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Differentiation & Integration

• In C3 you will have seen the wonderful trick to find the derivative of lnx:

y = lnx

ey = x

ey =
dx

dy

1

ey
=

dy

dx
dy

dx
=

1

x
.

We can use the same trick for inverse trig functions:

y = sin−1 x

sin y = x

cos y =
dx

dy

1

cos y
=

dy

dx

dy

dx
=

1
√

1− sin2 y
=

1√
1− x2

.

Similarly we can derive the following important results (you should do so for yourself!):

d

dx
sin−1 x =

1√
1− x2

,
d

dx
cos−1 x = − 1√

1− x2
,

d

dx
tan−1 x =

1

1 + x2
,

d

dx
sinh−1 x =

1√
1 + x2

,
d

dx
cosh−1 x =

1√
x2 − 1

,
d

dx
tanh−1 x =

1

1− x2
.

• A glance at the formula book5 shows that the above six derivations yield results such as
∫

1
a2+x2 dx = 1

a tan
−1 x

a + c. However, you should not allow yourself to get tied down to
the formula book. I am a firm believer that the formula booklet should act as a guide
only; showing you what substitution to use. For example if we needed to find

∫

5
9+4x2 dx

we would be lost with only the formula book, because it is not in precisely the same form.
However it ‘looks like’ the ‘tan−1’ answer in the formula book, so this is the hint to use
a ‘tan’ substitution. Here we want 4x2 = 9 tan2 θ; or, more simply, 2x = 3 tan θ. So (deep

breath!)

∫

5

9 + 4x2
dx 2x = 3 tan θ

=

∫

5

9 + 9 tan2 θ

3

2
sec2 θ dθ 2 dx = 3 sec2 θ dθ

=
15

2

∫

sec2 θ

9 sec2 θ
dθ

=
5

6
θ + c =

5

6
tan−1

(

2x

3

)

+ c.

5If your school has not provided you with a copy, you should ask for (demand) one. It is very useful to know
what’s in it. However, if you’re going to an interview at a top university and you say to your interviewer “I would
have to look at a formula book to answer that” then you can expect a rejection letter soon after.
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• Completing the square is another useful thing to look for. Here I don’t necessarily mean
the strict C1 method where 9x2 + 6x − 15 becomes 9(x + 1

3)
2 − 16. A much more useful

form for the former is (3x+ 1)2 − 16, keeping everything in integers. So if asked to work
out

∫

7√
9x2+6x−15

dx we can re-write it as
∫

7√
(3x+1)2−16

dx. This looks very similar to

the ‘cosh−1’ differential above. Therefore we need a ‘cosh’ substitution. Here we want
(3x+ 1)2 = 16 cosh2 u; or, more simply, 3x+ 1 = 4 cosh u. So (here we go!)

∫

7
√

(3x+ 1)2 − 16
dx 3x+ 1 = 4 cosh u

=

∫

7
√

16 cosh2 u− 16

4

3
sinhu du 3 dx = 4 sinhu du

=
28

3

∫

sinhu

4 sinhu
du

=
7

3
u+ c =

7

3
cosh−1

(

3x+ 1

4

)

+ c.

• Another useful trick is to split the numerator of a fraction in an integral into two bits
of more use. For example, if faced with

∫

2x+3
x2+4x+1

dx you can split it into
∫

2x+4
x2+4x+1

−
1

x2+4x+1
dx, each bit of which is now more easily handled.

• A useful substitution for integrals that involve trigonometric functions is t = tan
(

x
2

)

.
This is a boon because it changes horrible integrals with trig functions into new integrals
with no trig at all6. Given this substitution it can be shown that

tan x =
2t

1− t2
, sinx =

2t

1 + t2
, cosx =

1− t2

1 + t2
.

These must be learnt! When applying this, you must also use the fact that dx
dt = 2

1+t2 , to

replace the ‘dx’ at the end of the integral by ‘ 2
1+t2

dt’. For example to evaluate
∫

sinx
1+cos x dx

we find

∫

sinx

1 + cos x
dx =

∫ 2t
1+t2

1 + 1−t2

1+t2

2

1 + t2
dt using t = tan

(x

2

)

=

∫

2t

1 + t2
dt

= ln(1 + t2) + c

= ln(1 + tan2
(x

2

)

) + c.

The only thing to add is that if you were faced with
∫

sin 10x
1+cos 10x dx the substitution would

be t = tan 5x. This would change the ‘dx’ replacement (by the chain rule) to ‘ 1
5(1+t2) dt’.

Therefore

∫

sin 10x

1 + cos 10x
dx =

∫ 2t
1+t2

1 + 1−t2

1+t2

1

5(1 + t2)
dt =

1

10

∫

2t

1 + t2
dt.

Make sure you ‘get’ this; it is a little subtle.

6I don’t know about you, but I hate trig integrals and the sooner I can get rid of the trig bits the better.
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Reduction Formulae

• Reduction formulae involve integrals which do not only involve x, but also n. In general
we write

In =

∫

(something to do with x and n) dx

to indicate that the integral depends on n. The aim (usually) is to find a relationship
between In and In−1 or a relationship between In and In−2 and then use this relationship
to evaluate a specific integral (I6, say). Integration by parts tends to be the method needed
to find such a relationship since the integration by parts formula7 contains an integral on
each side of the equation which may be manipulated into the desired relationship. You
do occasionally need to be quite cunning!8

• For example find
∫ 1
0 x6e2x dx. Clearly9 the hint is to let In =

∫ 1
0 xne2x dx. By parts

In =

∫ 1

0
xne2x dx =

[

xne2x

2

]1

0

− n

2

∫ 1

0
xn−1e2x dx,

In =
e2

2
− n

2
In−1.

Now we have the relationship between In and In−1 we need some ‘low’ integral that we
can evaluate easily: I0 fits the bill since I0 =

∫ 1
0 e2x dx = e2−1

2 . So

I6 =
e2

2
− 6

2
I5

=
e2

2
− 6

2

(

e2

2
− 5

2
I4

)

= . . . work through for yourself. . .

=
7e2

8
− 45

8
.

• ‘Snapping off’ bits of trig functions often helps (i.e. writing sinn x as either sinx sinn−1 x

or sin2 x sinn−2 x). For example find a reduction formula for In =
∫

cosn x dx. Snap off a
‘cos x’ and then do parts, integrating the cos x and differentiating the cosn−1 x.

In =

∫

cosn x dx =

∫

cosx cosn−1 x dx

= sinx cosn−1 x+ (n− 1)

∫

sin2 x cosn−2 x dx

= sinx cosn−1 x+ (n− 1)

∫

(1− cos2 x) cosn−2 x dx

In = sinx cosn−1 x+ (n− 1)In−2 − (n− 1)In.

Isolating In we find In = 1
n sinx cosn−1 x+ n−1

n In−2. We can find I0 and I1 easily enough,
which means we can evaluate In =

∫

cosn x dx for any positive integer n.

7
∫

u dv
dx

dx = uv −

∫

v du
dx

dx.
8Remember the Alloway special!
9Hopefully you can see why letting In =

∫ 1

0
x7enx dx is a dreadful idea!

www.MathsHelper.co.uk 8 J.M.Stone



Maclaurin Series

• The Maclaurin series/expansion for a function is given by

f(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f ′′′′(0)

4!
x4 + · · · =

∞
∑

r=0

f (r)(0)

r!
xr.

This is a remarkable formula; it implies that you can know a function completely over all
values of x provided you know all the derivatives of a function at one value of x.

• You must know (and any good candidate ought to derive for themselves) the following
standard expansions:

ex = 1 + x+
x2

2!
+

x3

3!
+ · · · valid for all x,

sinx = x− x3

3!
+

x5

5!
− x7

7!
+ · · · valid for all x,

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · valid for all x,

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · · valid for− 1 < x < 1.

It is good to note that the ex series differentiates to itself and the sinx and cos x series
differentiate twice to minus themselves (as they should). Also we note that if we differen-
tiate ln(1+x) we get 1

1+x and the general binomial expansion of this (using C4 methods)

is precisely what we get by differentiating our Maclaurin expansion10.

• You rarely (if ever) need to derive a Maclaurin series from first principles11. What you
need to do is apply the series in the ‘formula booklet’ to similar situations.

• For example find the Maclaurin series for 3 cos(2x)
1+ln(1−4x) . So

3 cos(2x)

1 + ln(1− 4x)
=

3
(

1− (2x)2

2! + (2x)4

4! − . . .
)

1 +
(

(−4x)− (−4x)2

2 + (−4x)3

3 − . . .
)

=
3− 6x2 + 2x4 − . . .

1− 4x− 8x2 + . . .

= 3 + 12x+ 66x2 + . . .

To do the last step you consider the general binomial expansion on (1−4x−8x2+ . . . )−1.

Series & Integrals

• You must be able to sandwich certain integrals between sums (sum1 < integral < sum2)
and sandwich certain sums between integrals (integral1 < sum < integral2). The first of
these is easier to formulate, but the second of these is more useful since you are currently
better at integrals than sums.

• You must be abundantly clear whether you are dealing with an increasing or decreasing

function and you must always draw a sketch of the relevant curve and associated rectangles
to make sure you are not writing gibberish (as I have occasionally done in class). Remember a function
is increasing if dy

dx > 0 for all x-values in a range. Similarly a function is decreasing if
dy
dx 6 0.

101− x+ x2
− x3 + . . .

11That means you McKelvie!
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• For example sandwich
∫ n
1 x3 dx between two sums. Firstly y = x3 is an increasing function

in the range stated, so if we want the sum below the integral we want the rectangles where
the left height joins the curve. So 13 + 23 + · · · + (n − 1)3 <

∫ n
1 x3 dx. Similarly the sum

above the integral is where the right height joins the curve.

1 2 3 n-1 n4 5 and 1 2 3 n-1 n4 5

So

13 + 23 + · · ·+ (n− 1)3 <

∫ n

1
x3 dx < 23 + 33 + · · ·+ n3,

n−1
∑

i=1

i3 <

∫ n

1
x3 dx <

n
∑

i=2

i3.

• For example sandwich
∫ n
1

1
x2 dx between two sums. Here we have a decreasing function in

the range required, so the lower limit is now given by the rectangles whose right heights
join the curve. You should therefore find

(

1
2

)2
+

(

1
3

)2
+ · · ·+

(

1
n

)2
<

∫ n

1

1

x2
dx <

(

1
1

)2
+

(

1
2

)2
+ · · ·+

(

1
n−1

)2
,

n
∑

i=2

(

1
i

)2
<

∫ n

1

1

x2
dx <

n−1
∑

i=1

(

1
i

)2
.

• Notice the way the limits on the sums seem to flip between increasing and decreasing
functions.

• Sandwiching a sum between two integrals is a little more fiddly. For example sandwich
3
√
1+ 3

√
2+ 3

√
3+ · · ·+ 3

√
n between two integrals. Clearly the function we are considering

here is y = 3
√
x; this is an increasing function in the range. By considering two suitable

sketches we find

∫ n

0

3
√
x dx <

3
√
1 +

3
√
2 +

3
√
3 + · · ·+ 3

√
n <

∫ n+1

1

3
√
x dx,

3n4/3

4
<

3
√
1 +

3
√
2 +

3
√
3 + · · ·+ 3

√
n <

3(n + 1)4/3 − 3

4
.

• Similarly if you want to sandwich f(1) + f(2) + · · · + f(n) between two integrals where
y = f(x) is a decreasing function for 1 < x < n you should find

∫ n+1

1
f(x) dx < f(1) + f(2) + · · ·+ f(n) <

∫ n

0
f(x) dx.

Draw a sketch to see why.
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Numerical Methods

• In C3 you considered iterations of the form xn+1 = F (xn) which give a progression
of values x0, x1, x2, . . . xi, . . . xn . . . which hopefully converge towards a solution of the
equation x = F (x). The ‘true value’ of the solution is denoted α. We define the error at
any point of the iteration to be the difference between the ‘true value’ and the value of
the iteration at that point; i.e.

en = α− xn or ei = α− xi

It is obviously to be hoped that ei’s get smaller as the iteration progresses.

• [Taylor series (which are not technically on the FP2 syllabus, but are needed for a full
understanding of what follows) are a generalisation of Maclaurin series. Whereas Maclau-
rin series are ‘centred around’ x = 0 and provide increasingly good approximations to a
function around the y-axis, Taylor series provide approximations to a function around any
x-value you choose. The Taylor expansion around x = a is

F (x) = F (a) + F ′(a)(x − a) +
F ′′(a)

2!
(x− a)2 +

F ′′′(a)

3!
(x− a)3 + · · · .

• When considering the iteration xn+1 = F (xn) we can Taylor expand F (xn) about the root
α, so

xn+1 = F (xn) = F (α) + F ′(α)(xn − α) +
F ′′(α)

2!
(xn − α)2 +

F ′′′(α)

3!
(xn − α)3 + · · · .

But note that F (α) = α because we are solving the equation x = F (x). Therefore

xn+1 = α+ F ′(α)(xn − α) +
F ′′(α)

2!
(xn − α)2 +

F ′′′(α)

3!
(xn − α)3 + · · · .]

• If F ′(α) 6= 0 and we are in the neighbourhood of (i.e. close to) the root we can truncate

the Taylor series at the (xn − α) term to obtain

xn+1 ≈ α+ F ′(α)(xn − α).

Rearranging we find α− xn+1 ≈ F ′(α)(α − xn) which gives en+1 ≈ F ′(α)en so

en+1

en
≈ F ′(α) ≈ constant.

This shows that we require −1 < F ′(α) < 1 to get the desired convergence because we
need the errors to get smaller as we iterate.

• If F ′(α) = 0 the second term in the Taylor series vanishes which means we need the next
term, so

xn+1 ≈ α+
F ′′(α)

2!
(xn − α)2.

This rearranges to α− xn+1 ≈ −F ′′(α)
2! (α− xn)

2 and so en+1 ≈ −F ′′(α)
2! e2n and therefore

en+1 ∝ (en)
2;

this is called quadratic convergence and these iterations converges quickly because if en is
small (close to the root) then (en)

2 is much smaller (e.g. 0.012 = 0.0001).
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• The Newton-Raphson Method for numerical solution of equations is an ingenious method
which takes the tangent to a curve at a point and uses its x-axis intercept as the next
value for the iteration. For a given start value x = x1 the iteration is given by

xn+1 = xn − f(xn)

f ′(xn)
.

This is derived thus:

– Start with xn,

– Go to the curve at this point (xn, f(xn)),

– Construct tangent using f ′(xn) as the gradient and y − y1 = m(x− x1),

– y − f(xn) = f ′(xn)(x− xn),

– Put y = 0 to find where tangent crosses x-axis,

– This x value is xn+1.

Newton-Raphson converges quadratically12 explaining its speed.

12The N-R iteration xn+1 = xn−
f(xn)
f ′(xn)

can be thought of as xn+1 = F (xn) and we wish to show that F ′(α) = 0

for quadratic convergence. So differentiating F (x) we find

F
′(x) =

d

dx
(F (x))

=
d

dx

(

x−
f(x)

f ′(x)

)

= 1−

(

f ′(x)f ′(x)− f(x)f ′′(x)

[f ′(x)]2

)

(by the quotient rule)

=
f(x)f ′′(x)

[f ′(x)]2

Putting in x = α we obtain F ′(α) = f(α)f ′′(α)

[f ′(α)]2
. However f(α) must be zero because we are solving f(x) = 0 and

α is a root. Therefore F ′(α) = 0 when using N-R ⇒ quadratic convergence.
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